Confluent hypergeometric functions on an exceptional domain
نویسندگان
چکیده
منابع مشابه
Asymptotic Representations of Confluent Hypergeometric Functions.
I A more general theory will result if in the place of R we employ an abstract normed ring. s We use the symbols =, ... ... in more than one sense. No confusion need arise as tie context makes clear the meaning of each such symbol. It is worth while to mention here that the relation of equality = for E1 as well as for E2 is not an independent primitive idea; for, an equivalent set of postulates...
متن کاملOn modified asymptotic series involving confluent hypergeometric functions
A modification of standard Poincaré asymptotic expansions for functions defined by means of Laplace transforms is analyzed. This modification is based on an alternative power series expansion of the integrand, and the convergence properties are seen to be superior to those of the original asymptotic series. The resulting modified asymptotic expansion involves confluent hypergeometric functions ...
متن کاملSolution of Some Integral Equations Involving Confluent k-Hypergeometric Functions
The principle aim of this research article is to investigate the properties of k-fractional integration introduced and defined by Mubeen and Habibullah [1], and secondly to solve the integral equation of the form 1 1 0 , ; d , ; k x k k x t g x F t x f t k t t 0, 0, 0,0 k x , for , where 1 1 , ; , ; k F x k ...
متن کاملPolynomial series expansions for confluent and Gaussian hypergeometric functions
Based on the Hadamard product of power series, polynomial series expansions for confluent hypergeometric functions M(a, c; ·) and for Gaussian hypergeometric functions F (a, b; c; ·) are introduced and studied. It turns out that the partial sums provide an interesting alternative for the numerical evaluation of the functions M(a, c; ·) and F (a, b; c; ·), in particular, if the parameters are al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1984
ISSN: 0386-2194
DOI: 10.3792/pjaa.60.218